GENESIS
EDUCATION TRUST

The development of methods is cumulative: each method builds upon a previously taught method.
Strategies and methods must therefore be introduced in the order found in the calculation policy.
If your stream have mastered the methods assigned to their year group, introduce methods from the year above.

 Strategy	Concrete	Pictorial	Abstract								
Adding multiples of ten	Model using dienes and bead strings	Use representations for base ten.	$20+30=50$ Jot down T to represent the $T T T$ $70=50+20$ T Tens and count on in tens.								
Use known number facts Part part whole	Children explore ways of making numbers within 20	$\begin{gathered} 20 \\ \square+\square=20 \quad 20-\square=\square \\ \square+\square=20 \quad 20-\square=\square \\ \square+\square=\square \end{gathered}$	$\begin{array}{ll} \square+1=16 & 16-1=\square \\ 1+\square=16 & 16-\square=1 \end{array}$								
Using known facts		$\begin{aligned} & \because+\therefore=\therefore \\ & \\|\\|+\\|\\|=\\| \\| \\| \\ & \text { TTT TTTT } \\| \text { TTTTTTT } \end{aligned}$ Children draw representations of H, T and O	leads to $30+40=70$ leads to $300+400=700$								
Bar model	$3+4=7$	$7+3=10$	23 25 $?$ $23+25=48$								

Objective \& Strategy	Concrete	Pictorial	Abstract
Add a two digit number and ones	$17+5=22$ Use ten frame to make 'magic ten Children explore the pattern. $\begin{aligned} & 17+5=22 \\ & 27+5=32 \end{aligned}$	Use part $17+5=22$ part whole and number line to model.	$\begin{aligned} & 17+5=22 \\ & \quad \text { IIII } \\ & \text { Count on from } 17 \ldots 18,19,20,21,22 \text { How many } \\ & \text { lines did you draw? } 5 \\ & \text { Explore related facts } \\ & 17+5=22 \\ & 5+17=22 \\ & 22-17=5 \\ & 22-5=17 \end{aligned}$
Add a 2 digit number and tens	$25+10=35$ Explore that the ones digit does not change		$\begin{gathered} 27+10=37 \\ T \\ 27+20=47 \\ \text { T T } \\ 27+\square=57 \\ \text { T T T } \end{gathered}$
Add two 2-digit numbers	A) Model using dienes, place value counters and numicon	Use number line and bridge ten using part whole if necessary.	$\begin{gathered} 20+40=60 \\ 5+7=12 \\ 60+12=72 \end{gathered}$
Add three 1-digit numbers	 Combine to make 10 first if possible, or bridge 10 then add third digit		$\begin{aligned} \frac{(4)+7+6}{10} & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make/ bridge ten then add on the third.

	Concrese	Pricoral		Y4.6
				-
	"s			O

Objective \& Strategy	Concrete	Pictorial	Abstract			
Taking away ones.	Use physical objects, counters , cubes etc to show how objects can be taken away.	$15-3=12$ Cross out drawn objects to show what has been taken away.	$7-4=3$ Jot the lines for the first number $\\|\\|i\\| i$ as it's subtraction.			
Counting back	 Move objects away from the group, counting backwards. \square Move the beads along the bead string as you count backwards.	Count back in ones using a number line.	Put 13 in your head, count back 4. What number are you at? 13-4 Jot the ones. TIII We cannot cross out 4 lines; therefore, we need to use the tens. 13-4 IIII IIIIIIIIII Then, cross out 4. We're left with 7.			
Find the Difference	Compare objects and amounts Lay objects to represent bar model.	Count on using a number line to find the difference. 12 5 ?	Hannah has12 sweets and her sister has 5. How many more does Hannah have than her sister? $12-5$ II IIIIII世			

Oikectues sraeer	Conceete	Prioral	Abstrat
mese			
Earmeat	$00_{5-2=3}^{900}$		

Objective \& Strategy	Concrete	Pictorial	Abstract	
Regroup a ten into ten ones	Use a PV chart to show how to change a ten into ten ones, use the term 'take and make'	$\begin{gathered} \text { 3乌3 } \\ 20-4= \end{gathered}$	$20-4=16$	
Partitioning to subtract without regrouping. 'Friendly numbers'	$34-13=21$ Use Dienes to show how to partition the number when subtracting without regrouping.	Children draw representations of Dienes and cross off. \emptyset $43-21=22$	$\begin{gathered} 43-21=22 \\ 43 \\ -\frac{21}{22} \end{gathered}$	
Make ten strategy Progression should be crossing one ten, crossing more than one ten, crossing the hundreds.	Use a bead bar or bead strings to model counting to next ten and the rest.		$93-76=17$	

Objective \& Strategy	Concrete	Pictorial	Abstract
Column subtraction without regrouping (friendly numbers)	Use base 10 or Numicon to model	Darw representations to support understanding	Intermediate step may be needed to lead to clear subtraction understanding.
Column subtraction with regrouping	32-6 Regroup a ten as ten ones. Then subtract	Children may draw base ten or PV counters and cross off.	Begin by partitioning into pv columns Transition after 2 days. $728-582=146$ Then move to formal method.

Objective \& Strategy	Concrete	Pictorial	Abstract
Subtracting tens and ones Year 4 subtract with up to 4 digits. Introduce decimal subtraction through context of money	As per year 3, children to use concrete resources where necessary.	Children to draw pv counters and show their exchange-see Y3	Use the phrase 'take and make' for exchange
Year 5-Subtract with at least 4 digits, including money and measures. Subtract with decimal values, including mixtures of integers and decimals and aligning the decimal	As per year 3 and 4, children to use concrete resources where necessary.	Children to draw pv counters and show their exchange-see Y3	$\begin{array}{r} { }^{2} 8^{10} x^{10986} \\ -\quad 2128 \\ \hline 28,928 \end{array}$ Use zeros for placeholders. $\begin{array}{r} 67^{10} x^{\prime} 6^{8} 9 \cdot 0 \\ -\quad 372 \cdot 5 \\ \hline 6796.5 \end{array}$
Year 6-Subtract with increasingly large and more complex numbers and decimal values.			

Objective \& Strategy	Concrete	Pictorial	Abstract
Doubling	Use practical activities using manipultives including cubes and Numicon to demonstrate doubling double 4 is 8 $4 \times 2=8$	Double 4 is 8	Partition a number and then double each part before recombining it back together.
Counting in multiples	Count the groups as children are skip counting, children may use their fingers as they are skip counting.	Children make representations to show counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $2,4,6,8,10$ $5,10,15,20,25,30$
Making equal groups and counting the total	Use manipulatives to create equal groups.	Draw to show $2 \times 3=6$ Draw and make representations	$2 \times 4=8$

Objective \& Strategy	Concrete	Pictorial	Abstract	
Multiplication is commutative	Create arrays using counters and cubes and Numicon. Pupils should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer.	Use representations of arrays to show different calculations and explore commutativity.	$\begin{aligned} & 12=3 \times 4 \\ & 12=4 \times 3 \end{aligned}$ Use an array to write multiplication sentences and reinforce repeated addition. $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$	
Using the Inverse This should be taught alongside division, so pupils learn how they work alongside each other.			$\begin{aligned} & 2 \times 4=8 \\ & 4 \times 2=8 \\ & 8 \div 2=4 \\ & 8 \div 4=2 \\ & 8=2 \times 4 \\ & 8=4 \times 2 \\ & 2=8 \div 4 \\ & 4=8 \div 2 \end{aligned}$ Show all 8 related fact family sentences.	

Short Division with remainders

Step 1—a remainder in the ones

> | $h \mathrm{t} \circ$ |
| :---: |
| 041 R 1 |
| 165 |

4 does not go into 1 (hundred). So combine the 1 hundred with the 6 tens (160).
4 goes into 16 four times.
4 goes into 5 once, leaving a remainder of 1 .

$$
\begin{gathered}
\text { th hto } \\
04000 \mathrm{R7} \\
\hline 3207
\end{gathered}
$$

8 does not go into 3 of the thousands. So combine the 3 thousands with the 2 hundreds $(3,200)$.
8 goes into 32 four times $(3,200 \div 8=400)$
8 goes into 0 zero times (tens).
8 goes into 7 zero times, and leaves a remainder of 7 .

